Transition to Clean Energy: Bridge Technologies

Gasification sounds very interesting. Maybe this can begin the process of weaning us off our oil addiction (that supports the terrorist cultures) while the R&D people continue to improve alternative energy sources.

Source: The New York Times > Opinion > Op-Ed Contributors: Coal in a Nice Shade of Green.

…the important thing is to come up with so-called bridge technologies that can power our cities, factories and cars with fewer emissions than traditional fossil fuels while we move to clean energy like solar, wind and safe nuclear power. A prime example of a bridge technology – one that exists right now – is gasification.

Here’s how it works: in a type of power plant called an integrated gasification combined-cycle facility, we change any fossil fuel, including coal, into a superhot gas that is rich in hydrogen – and in the process strip out pollutants like sulfur and mercury. As in a traditional combustion power plant, the heat generates large amounts of electricity; but in this case, the gas byproducts can be pure streams of hydrogen and carbon dioxide.

This matters for several reasons. The hydrogen produced could be used as a transportation fuel. Equally important, the harmful carbon dioxide waste is in a form that can be pumped deep underground and stored, theoretically for millions of years, in old oil and gas fields or saline aquifers. This process is called geologic storage, or carbon sequestration, and recent field demonstrations in Canada and Norway have shown it can work and work safely.

The marriage of gasified coal plants and geologic storage could allow us to build power plants that produce vast amounts of energy with virtually no carbon dioxide emissions in the air. The Department of Energy is pursuing plans to build such a zero-emission power plant and is encouraging energy companies to come up with proposals of their own. The United States, Britain and Germany are also collaborating to build such plants in China and India as part of an effort by the Group of 8. Moreover, these plants are very flexible: although coal is the most obvious fuel source, they could burn almost any organic material, including waste cornhusks and woodchips.

This is an emerging technology, so inevitably there are hurdles. For example, we need a crash program of research to find out which geological formations best lock up the carbon dioxide for the longest time, followed by global geological surveys to locate these formations and determine their capacity. Also, coal mining is dangerous and strip-mining, of course, devastates the environment; if we are to mine a lot more coal in the future we will want more environmentally friendly methods.

On balance, though, this combination of technologies is probably among the best ways to provide the energy needed by modern societies – including populous, energy-hungry and coal-rich societies like China and India – without wrecking the global climate.

Fossil fuels, especially petroleum, powered the industrialization of today’s rich countries and they still drive the world economy. But within the lifetimes of our grandchildren, the age of petroleum will wane. The combination of gasified coal plants and geologic storage can be our bridge to the clean energy – derived from renewable resources like solar and wind power and perhaps nuclear fusion – of the 22nd century and beyond.

Thomas Homer-Dixon is director of the Center for Peace and Conflict Studies at the University of Toronto. S. Julio Friedmann directs the carbon sequestration project at Lawrence Livermore National Laboratory in Livermore, Calif.