Scientific American’s Solar Grand Plan

Scientific American describes how the U.S. can become energy independent. Excerpts below.

In the 1970s I remember futurists predicting that every home would have a computer by the year 2000. The pessimists pointed out, with very rational arguments based on the past, that a computer in the home was a ridiculous idea.

I hope there are leaders in the U.S. who are not obligated to oil companies that can adopt a transition to solar vision. We need a new strategy.

Link: A Solar Grand Plan: Scientific American

The U.S. needs a bold plan to free itself from fossil fuels. Our analysis convinces us that a massive switch to solar power is the logical answer.

Solar energy’s potential is off the chart. The energy in sunlight striking the earth for 40 minutes is equivalent to global energy consumption for a year. The U.S. is lucky to be endowed with a vast resource; at least 250,000 square miles of land in the Southwest alone are suitable for constructing solar power plants, and that land receives more than 4,500 quadrillion British thermal units (Btu) of solar radiation a year. Converting only 2.5 percent of that radiation into electricity would match the nation’s total energy consumption in 2006.

To convert the country to solar power, huge tracts of land would have to be covered with photovoltaic panels and solar heating troughs. A direct-current (DC) transmission backbone would also have to be erected to send that energy efficiently across the nation.

The technology is ready.

US Solar Map

Graphic - Key Concepts

  • A massive switch from coal, oil, natural gas and nuclear power plants to solar power plants could supply 69 percent of the U.S.’s electricity and 35 percent of its total energy by 2050.
  • A vast area of photovoltaic cells would have to be erected in the Southwest. Excess daytime energy would be stored as compressed air in underground caverns to be tapped during nighttime hours.
  • Large solar concentrator power plants would be built as well.
  • A new direct-current power transmission backbone would deliver solar electricity across the country.
  • But $420 billion in subsidies from 2011 to 2050 would be required to fund the infrastructure and make it cost-competitive.